Spectral theorem for quaternionic normal operators: Multiplication form

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spectral Theorem for Normal Operators: Applications

In these notes, we present a number of interesting and diverse applications of the Spectral Theorem for Normal Operators. These include a Spectral Mapping Theorem for Normals Operators, a Spectral Characterization of Algebraic Operators, von Neumann’s Mean Ergodic Theorem, Pathconnectivity of the Group of Invertible Operators, and some Polynomial Approximation Results for Operators.

متن کامل

Spectral Approximation of Multiplication Operators

A linear operator on a Hilbert space may be approximated with nite matrices by choosing an orthonormal basis of the Hilbert space. For an operator that is not compact such approximations cannot converge in the norm topology on the space of operators. Multiplication operators on spaces of L2 functions are never compact; for them we consider how well the eigenvalues of the matrices approximate th...

متن کامل

Spectral Theorem for Self-adjoint Linear Operators

Let V be a finite-dimensional vector space, either real or complex, and equipped with an inner product 〈· , ·〉. Let A : V → V be a linear operator. Recall that the adjoint of A is the linear operator A : V → V characterized by 〈Av, w〉 = 〈v, Aw〉 ∀v, w ∈ V (0.1) A is called self-adjoint (or Hermitian) when A = A. Spectral Theorem. If A is self-adjoint then there is an orthonormal basis (o.n.b.) o...

متن کامل

Spectral Theorem for Bounded Self-adjoint Operators

Diagonalization is one of the most important topics one learns in an elementary linear algebra course. Unfortunately, it only works on finite dimensional vector spaces, where linear operators can be represented by finite matrices. Later, one encounters infinite dimensional vector spaces (spaces of sequences, for example), where linear operators can be thought of as ”infinite matrices”. Extendin...

متن کامل

Normal Form Bisimulations for Delimited-Control Operators

We define a notion of normal form bisimilarity for the untyped call-by-value λ-calculus extended with the delimited-control operators shift and reset. Normal form bisimilarities are simple, easy-to-use behavioral equivalences which relate terms without having to test them within all contexts (like contextual equivalence), or by applying them to function arguments (like applicative bisimilarity)...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin des Sciences Mathématiques

سال: 2020

ISSN: 0007-4497

DOI: 10.1016/j.bulsci.2020.102840